Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Cell Biol ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38395735

RESUMEN

Unlike most other organelles found in multiple copies, the endoplasmic reticulum (ER) is a unique singular organelle within eukaryotic cells. Despite its continuous membrane structure, encompassing more than half of the cellular endomembrane system, the ER is subdivided into specialized sub-compartments, including morphological, membrane contact site (MCS), and de novo organelle biogenesis domains. In this review, we discuss recent emerging evidence indicating that, in response to nutrient stress, cells undergo a reorganization of these sub-compartmental ER domains through two main mechanisms: non-destructive remodeling of morphological ER domains via regulation of MCS and organelle hitchhiking, and destructive remodeling of specialized domains by ER-phagy. We further highlight and propose a critical role of membrane lipid metabolism in this ER remodeling during starvation.

2.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37883971

RESUMEN

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Asunto(s)
Lisosomas , Transducción de Señal , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes , Fenómenos Fisiológicos Celulares
3.
Science ; 378(6625): eabq5209, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36520888

RESUMEN

Cells respond to fluctuating nutrient supply by adaptive changes in organelle dynamics and in metabolism. How such changes are orchestrated on a cell-wide scale is unknown. We show that endosomal signaling lipid turnover by MTM1, a phosphatidylinositol 3-phosphate [PI(3)P] 3-phosphatase mutated in X-linked centronuclear myopathy in humans, controls mitochondrial morphology and function by reshaping the endoplasmic reticulum (ER). Starvation-induced endosomal recruitment of MTM1 impairs PI(3)P-dependent contact formation between tubular ER membranes and early endosomes, resulting in the conversion of ER tubules into sheets, the inhibition of mitochondrial fission, and sustained oxidative metabolism. Our results unravel an important role for early endosomal lipid signaling in controlling ER shape and, thereby, mitochondrial form and function to enable cells to adapt to fluctuating nutrient environments.


Asunto(s)
Retículo Endoplásmico , Endosomas , Mitocondrias , Dinámicas Mitocondriales , Fosfatos de Fosfatidilinositol , Fosfatidilinositoles , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Mitocondrias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
4.
Nat Rev Mol Cell Biol ; 23(12): 797-816, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35589852

RESUMEN

Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.


Asunto(s)
Endosomas , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Transducción de Señal , Lisosomas/metabolismo
5.
Nat Commun ; 12(1): 2673, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976123

RESUMEN

Vesicular traffic and membrane contact sites between organelles enable the exchange of proteins, lipids, and metabolites. Recruitment of tethers to contact sites between the endoplasmic reticulum (ER) and the plasma membrane is often triggered by calcium. Here we reveal a function for calcium in the repression of cholesterol export at membrane contact sites between the ER and the Golgi complex. We show that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon loss of the inositol 5-phosphatase INPP5A or receptor signaling triggers depletion of cholesterol and associated Gb3 from the cell surface, resulting in a blockade of clathrin-independent endocytosis (CIE) of Shiga toxin. This phenotype is caused by the calcium-induced dissociation of oxysterol binding protein (OSBP) from the Golgi complex and from VAP-containing membrane contact sites. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lipid exchange at membrane contact sites.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Inositol/metabolismo , Lípidos de la Membrana/metabolismo , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Colesterol/metabolismo , Endocitosis , Células HEK293 , Células HeLa , Humanos , Inositol Polifosfato 5-Fosfatasas/genética , Inositol Polifosfato 5-Fosfatasas/metabolismo , Microscopía Confocal , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Trihexosilceramidas/metabolismo
6.
EMBO J ; 36(17): 2510-2528, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28673931

RESUMEN

Mechanical tensions are usually generated during development at spatially defined regions within tissues. Such physical cues dictate the cellular decisions of proliferation or cell cycle arrest. Yet, the mechanisms by which mechanical stress controls the cell cycle are not yet fully understood. Here, we report that mechanical cues function upstream of Skp2 transcription in human breast cancer cells. We found that YAP, the mechano-responsive oncogenic Hippo signaling effector, directly promotes Skp2 transcription. YAP inactivation induces cell cycle exit (G0) by down-regulating Skp2, causing p21/p27 to accumulate. Both Skp2 reconstitution and p21/p27 depletion can rescue the observed defect in cell cycle progression. In the context of a tissue-mimicking 3D culture system, Skp2 inactivation effectively suppresses YAP-driven oncogenesis and aberrant stiff 3D matrix-evoked epithelial tissue behaviors. Finally, we also found that the expression of Skp2 and YAP is positively correlated in breast cancer patients. Our results not only reveal the molecular mechanism by which mechanical cues induce Skp2 transcription, but also uncover a role for YAP-Skp2 oncogenic signaling in the relationship between tissue rigidity and cancer progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Estrés Mecánico , Ciclo Celular , Línea Celular Tumoral , Femenino , Humanos , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP
7.
PLoS One ; 10(9): e0138905, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26407333

RESUMEN

A procentriole is assembled next to the mother centriole during S phase and remains associated until M phase. After functioning as a spindle pole during mitosis, the mother centriole and procentriole are separated at the end of mitosis. A close association of the centriole pair is regarded as an intrinsic block to the centriole reduplication. Therefore, deregulation of this process may cause a problem in the centriole number control, resulting in increased genomic instability. Despite its importance for faithful centriole duplication, the mechanism of centriole separation is not fully understood yet. Here, we report that centriole pairs are prematurely separated in cells whose cell cycle is arrested at M phase by STLC. Dispersal of the pericentriolar material (PCM) was accompanied. This phenomenon was independent of the separase activity but needed the PLK1 activity. Nocodazole effectively inhibited centriole scattering in STLC-treated cells, possibly by reducing the microtubule pulling force around centrosomes. Inhibition of PLK1 also reduced the premature separation of centrioles and the PCM dispersal as well. These results revealed the importance of PCM integrity in centriole association. Therefore, we propose that PCM disassembly is one of the driving forces for centriole separation during mitotic exit.


Asunto(s)
División Celular , Centriolos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/efectos de los fármacos , Células HeLa , Humanos , Nocodazol/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Moduladores de Tubulina/farmacología , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...